التخطي إلى المحتوى الرئيسي

مراجعة اتجاهات التكنولوجيا لعام 2022 ، الجزء الثاني: الذكاء الاصطناعي والرسوم البيانية





تشترك منظمة العفو الدولية والرسوم البيانية في بعض الأشياء: فهي متعددة الأوجه ، ومنتشرة في كل مكان في تطبيقاتها ، وتشهد نموًا سريعًا في عشرينيات القرن الحالي.

للذكاء الاصطناعي العديد من المظاهر ، بدءًا من الأجهزة إلى التطبيقات في مجالات مثل الرعاية الصحية ، ومن النماذج المستقبلية إلى الأخلاق

بروح العامين الماضيين ، نستعرض التطورات في ما حددناه على أنه محركات التكنولوجيا الرئيسية لعقد 2020 في عالم قواعد البيانات وإدارة البيانات والذكاء الاصطناعي . ننظر إلى الوراء في عام 2021 ، في محاولة لتحديد الأنماط التي ستشكل عام 2022.

ننتقل اليوم من حيث بدأنا بالجزء الأول من مراجعتنا ، لتغطية الرسوم البيانية للذكاء الاصطناعي والمعرفة.

الوجوه المتعددة للذكاء الاصطناعي: الأجهزة ، والحافة ، و MLOps ، ونماذج اللغة ، وبنى المستقبل ، والأخلاق

من حيث المبدأ ، نحاول التعامل مع الذكاء الاصطناعي بشكل كلي. لمراعاة الإيجابيات والسلبيات ، من اللامع إلى العادي ، ومن الأجهزة إلى البرامج. كانت الأجهزة قصة مستمرة في القصة الأوسع للذكاء الاصطناعي خلال السنوات القليلة الماضية ، ونشعر أنها مكان جيد لبدء جولتنا.

على مدار العامين الماضيين ، ظللنا نراقب القائمة المتزايدة لبائعي "رقائق الذكاء الاصطناعي" ، أي الشركات التي شرعت في تطوير بنى أجهزة جديدة من الألف إلى الياء ، تستهدف على وجه التحديد أعباء عمل الذكاء الاصطناعي. كلهم يتطلعون إلى الحصول على قطعة من الفطيرة التي تبدو متنامية باستمرار: مع استمرار التوسع في الذكاء الاصطناعي ، قال إن أعباء العمل تستمر في النمو ، وتقديم الخدمات بأسرع ما يمكن واقتصاديًا قدر الإمكان هو هدف واضح.

تواصل Nvidia الهيمنة على هذا السوق. كانت Nvidia موجودة بالفعل في السوق قبل وقت طويل من بدء أعباء عمل الذكاء الاصطناعي في الازدهار ولديها الفطنة وردود الفعل للاستفادة من ذلك من خلال بناء نظام بيئي للأجهزة والبرامج. إن تحركها في عام 2020 لجعل Arm جزءًا من هذا النظام البيئي يخضع للتدقيق التنظيمي. ومع ذلك ، لم تظل Nvidia خامدة في عام 2021.

من بين عدد كبير من الإعلانات التي تم إصدارها في حدث Nvidia's GTC في نوفمبر 2021 . الأشياء التي تجلب شيئًا جديدًا على مستوى الأجهزة لها علاقة بما يمكن أن نجادل به يميز تركيز الذكاء الاصطناعي في عام 2021 بشكل عام: الاستدلال والحافة. قدمت Nvidia عددًا من التحسينات لخادم الاستدلال Triton . كما قدمت أيضًا Nvidia A2 Tensor Core GPU ، وهو مُسرع منخفض الطاقة وصغير الحجم لاستدلال الذكاء الاصطناعي عند الحافة التي تدعي Nvidia أنها توفر أداء استدلالًا أكبر بما يصل إلى 20 ضعفًا من وحدات المعالجة المركزية.

وماذا عن المبتدئين؟ تدعي SambaNova أنها الآن "أفضل شركة ناشئة في مجال الذكاء الاصطناعي تمولاً في العالم" بعد تمويل ضخم بقيمة 676 مليون دولار في السلسلة D ، متجاوزًا 5 مليار دولار في التقييم. تتمثل فلسفة SambaNova في تقديم "الذكاء الاصطناعي كخدمة" ، بما في ذلك الآن نماذج لغة GPT ، ويبدو أن عام 2021 كان إلى حد كبير عام الانتقال إلى السوق بالنسبة لهم.

Xilinx ، من جانبها ، تدعي تحقيق تسريع كبير للشبكات العصبية مقابل وحدات معالجة الرسومات Nvidia . تدعي Cerebras أنها تهيمن تمامًا على الحوسبة المتطورة وحصلت على بعض التمويل الضخم أيضًا . تتنافس Graphcore مع Nvidia (و Google) في نتائج MLPerf . استأجرت Tenstorrent مصمم الرقائق الأسطوري كيلر . جمع Blaize 71 مليون دولار لجلب ذكاء اصطناعي متطور للتطبيقات الصناعية . سجلت شركة Flex Logix مبلغ 55 مليون دولار في دعم المشاريع ، وبذلك وصل إجمالي أرباحها إلى 82 مليون دولار . أخيرًا وليس آخرًا ، لدينا حصان جديد في السباق في NeuReality ، وطرق لدمج ومطابقة النشر في ONNX و TVM ، و وعد باستخدام الذكاء الاصطناعي لتصميم شرائح الذكاء الاصطناعي . إذا لم يكن هذا ابتكارًا مزدهرًا ، فنحن لا نعرف ما هو.

وفقًا لتقرير حالة الحافة الصادر عن مؤسسة Linux ، من المرجح بشكل خاص أن تعمل شركات الرعاية الصحية الرقمية والتصنيع وتجارة التجزئة على توسيع نطاق استخدامها للحوسبة المتطورة بحلول عام 2028. ولا عجب في انتشار أجهزة وأطر وتطبيقات الذكاء الاصطناعي التي تستهدف الحافة أيضًا.

TinyML ، فن وعلم إنتاج نماذج التعلم الآلي المقتصدة بما يكفي للعمل على الحافة ، يشهد نموًا سريعًا وبناء نظام بيئي . أعلنت شركة Edge Impulse ، وهي شركة ناشئة ترغب في جعل التعلم الآلي على حافة الهاوية للجميع ، عن تمويلها من السلسلة B بقيمة 34 مليون دولار . تطبيقات Edge قادمة ، وسيكون الذكاء الاصطناعي وأجهزته جزءًا كبيرًا من ذلك.

شيء ما أطلقناه في عام 2020 ، كان بارزًا في عام 2021 وسيظل معنا في السنوات القادمة يسمى MLOps - جلب التعلم الآلي إلى الإنتاج. في عام 2021 ، حاول الأشخاص إعطاء أسماء للعديد من الظواهر المتعلقة بـ MLOps ، والتقطيع والنرد في مجال MLOps ، وتطبيق التحكم في إصدار البيانات والتعلم الآلي المستمر ، بالإضافة إلى ما يعادل التطوير القائم على الاختبار للبيانات من بين أشياء أخرى. يتحول التركيز من النماذج الجديدة اللامعة إلى ربما تكون أكثر اعتدالًا ، ولكن الجوانب العملية مثل جودة البيانات وإدارة خطوط أنابيب البيانات ، وستستمر عمليات MLOps في النمو .

الشيء الآخر الذي من المحتمل أن يستمر في النمو ، سواء من حيث الحجم أو العدد ، هو نماذج اللغات الكبيرة (LLMs). يعتقد بعض الناس أن LLM يمكن أن تستوعب الأشكال الأساسية للغة ، سواء كانت علم الأحياء أو الكيمياء أو لغة الإنسان ، ونحن على وشك أن نرى تطبيقات غير عادية للغة LLM تنمو. آخرون ، ليس كثيرا . في كلتا الحالتين ، تتكاثر LLM.

بالإضافة إلى "المشتبه بهم المعتادون" - OpenAI مع GPT3 الخاص بها ، DeepMind مع أحدث RETRO LLM ، Google مع مجموعة LLMs المتزايدة باستمرار - تعاونت Nvidia الآن مع Microsoft في Megatron LLM . لكن هذا ليس كل شيء.

في الآونة الأخيرة ، قامت شركة EleutherAI ، وهي مجموعة من باحثي الذكاء الاصطناعي المستقلين ، بفتح نموذج GPT-j الذي تبلغ قيمته 6 مليارات متغير. بالإضافة إلى ذلك ، إذا كنت مهتمًا بلغات غير الإنجليزية ، فلدينا الآن نموذج كبير للغة الأوروبية يتقن اللغة الإنجليزية والألمانية والفرنسية والإسبانية والإيطالية بواسطة Aleph Alpha. Wudao هو LLM صيني وهو أيضًا أكبر LLM مع 1.75 تريليون معلمة ، و HyperCLOVA هو LLM كوري مع 204 مليار معلمة. بالإضافة إلى ذلك ، هناك دائمًا LLMs مفتوحة المصدر أخرى أقدم قليلاً / أصغر مثل GPT2 أو BERT والعديد من الأشكال المختلفة.

بالإضافة إلى LLMs ، ألمح كل من DeepMind و Google إلى بنى ثورية لنماذج الذكاء الاصطناعي ، مع Perceiver و Pathways ، على التوالي. تم انتقاد المسارات لكونها غامضة إلى حد ما. ومع ذلك ، سنجرؤ على التكهن بأنه يمكن أن يستند إلى Perceiver. ولكن نظرًا لأننا في منطقة تقنية مستقبلية ، فسيكون من الحذف ناهيك عن التفكير الخوارزمي العصبي لـ DeepMind ، وهو اتجاه بحثي يعد بمزج خوارزميات علوم الكمبيوتر الكلاسيكية بالتعلم العميق.

لن تكتمل أي جولة في منظمة العفو الدولية ، مهما كانت مكثفة ، دون الإشارة الفخرية إلى أخلاقيات الذكاء الاصطناعي . ظلت أخلاقيات الذكاء الاصطناعي في صدارة اهتماماتنا في عام 2021 ، وقد رأينا أشخاصًا يتراوحون من مفوضي لجنة التجارة الفيدرالية إلى ممارسي الصناعة يحاول كل منهم معالجة أخلاقيات الذكاء الاصطناعي بطريقته الخاصة. ودعونا لا ننسى الازدهار المستمر لتطبيقات الذكاء الاصطناعي في مجال الرعاية الصحية ، وهو مجال يجب أن تكون فيه الأخلاقيات أولوية قصوى مع أو بدون الذكاء الاصطناعي .

الرسوم البيانية المعرفية وقواعد البيانات البيانية والرسم البياني AI

لقد كنا مؤيدين متعطشين للرسوم البيانية من جميع الأشكال والأحجام - الرسوم البيانية المعرفية ، وقواعد بيانات الرسوم البيانية ، وتحليلات الرسوم البيانية ، وعلوم البيانات ، والذكاء الاصطناعي - لفترة طويلة. لذا فإننا نبلغ من هذه الجبهة بمشاعر مختلطة. من ناحية أخرى ، لم نشهد الكثير من الابتكارات ، باستثناء ربما في منطقة واحدة - الرسم البياني للشبكات العصبية . يستفيد التفكير الحسابي العصبي لـ DeepMind من شبكات GNN أيضًا.

من ناحية أخرى ، هذا ليس بالضرورة أمرًا سيئًا لسببين. أولاً ، هناك استيعاب كبير للتكنولوجيا في التيار الرئيسي. بحلول عام 2025 ، سيتم استخدام تقنيات الرسم البياني في 80٪ من ابتكارات البيانات والتحليلات ، ارتفاعًا من 10٪ في عام 2021 ، مما يسهل اتخاذ القرار السريع ، كما تتوقع جارتنر . لم يعد الإبلاغ عن حالات الاستخدام من أمثال BMW و IKEA و Siemens Energy و Wells Fargo و UBS خبراً ، وهذا أمر جيد. نعم ، هناك تحديات مرتبطة ببناء الرسوم البيانية المعرفية والحفاظ عليها ، ولكن هذه التحديات ، في الغالب ، مفهومة جيدًا.

كما لاحظنا ، الرسوم البيانية المعرفية هي عمليًا تقنية عمرها 20 عامًا ويبدو أن وقتها في دائرة الضوء قد حان. طرق بناء الرسوم البيانية المعرفية معروفة وكذلك التحديات التي تكمن فيها. ليس من قبيل المصادفة أن بعض المهارات ومجالات التطوير الأكثر طلبًا في الرسوم البيانية المعرفية تدور حول استخدام معالجة اللغة الطبيعية والواجهات المرئية لبناء الرسوم البيانية المعرفية والحفاظ عليها ، بالإضافة إلى طرق التوسع من سيناريوهات المستخدم الفردي إلى سيناريوهات متعددة المستخدمين .

ولربط هذه المحادثة بالصورة الأوسع للذكاء الاصطناعي حيث تنتمي ، يبدو أن التحديات المشتركة تدور حول التشغيل وبناء الخبرة المناسبة في الفرق ، حيث أن هذه المهارات مطلوبة بشدة. نقطة اتصال مهمة أخرى هي اتجاه الذكاء الاصطناعي المختلط ، والذي يدور حول غرس المعرفة في التعلم الآلي. يشير قادة مثل جادي سينجر من إنتل ومايك ديلينجر من لينكد إن وفرانك فان هارملين من مركز الذكاء الهجين إلى أهمية تنظيم المعرفة في شكل رسوم بيانية معرفية لمستقبل الذكاء الاصطناعي .

الرسوم البيانية المعرفية وقواعد بيانات الرسم البياني و Graph AI كلها متقاربة
AWS

هناك أيضًا نقطة اتصال مهمة أخرى بين الصورة الأوسع للذكاء الاصطناعي والرسوم البيانية المعرفية: شبكات البيانات وأنسجة البيانات. سيتم إعفاؤك لخلط هذين المصطلحين مع عدد كبير من المصطلحات المتعلقة بالبيانات التي تطير هذه الأيام . بشكل مبسط ، دعنا نقول فقط أن نسيج البيانات يُقصد به أن يكون بمثابة الركيزة التقنية لمفهوم شبكة البيانات للإدارة اللامركزية للبيانات في المؤسسات. يعد هذا في الواقع تطابقًا جيدًا للغاية لتقنية الرسم البياني المعرفي ، وقد حدد عدد قليل من البائعين في تلك المساحة ذلك ووضعوا أنفسهم وفقًا لذلك. حتى يبدو تكنولوجيا المعلومات، قد لاحظت .

وماذا عن الركيزة لبناء الرسوم البيانية المعرفية ، وهي قواعد بيانات الرسم البياني؟ الكلمة التي يبدو أنها تميز عام 2021 لقواعد بيانات الرسم البياني ستكون "اذهب إلى السوق". لقد كان عامًا جيدًا لقواعد بيانات الرسم البياني. قاعدة بيانات الرسم البياني - Neo4j - صنعت أفضل 20 محركًا في DB للمرة الأولى. كما أعلنت Neo4j على توافر العامة من النسمة الخدمات السحابية المدارة لها و أثارت سلسلة F جولة التمويل 325 مليون $ ، وهو الأكبر في تاريخ قاعدة البيانات، وبذلك تقييمها إلى أكثر من 2 مليار $.

شهدت مساحة قاعدة بيانات الرسم البياني سلسلة من جولات التمويل والاكتتاب العام الأولي القادم. حصلت TigerGraph على 105 مليون دولار من السلسلة C ، و Katana Graph بقيمة 28.5 مليون دولار من السلسلة A ، و Memgraph ، و 9.34 مليون دولار للتمويل الأولي ، و TerminusDB 3.6 مليون يورو . في غضون ذلك ، بدأت Bitnine ، صانعي Agens Graph ، العمل على الاكتتاب العام الأولي - الأول من نوعه في السوق.

على الصعيد التقني ، لا تزال GraphQL تزداد اعتمادًا ، إما كجزء من نظام بيئي أوسع أو كمكون مركزي في بنية البيانات . لا يزال سد عوالم قاعدة بيانات الرسم البياني من حيث النماذج ، RDF و LPG ، عملاً قيد التنفيذ ، لكنه شهد بعض التطورات المثيرة للاهتمام في عام 2021 .

لا نتوقع أن يستمر شهر العسل في العالم مع الرسوم البيانية وقواعد البيانات البيانية إلى الأبد ، وبعد الضجيج ، ستتبع خيبة الأمل حتمًا في مرحلة ما. لكننا على ثقة من أن هذه التكنولوجيا أساسية وسوف تجدها مكانها على الرغم من السقطات.

المشاركات الشائعة من هذه المدونة

دعنا نذهب فيديو: الاتصال بصريا

يعد الفيديو وسيلة ميسورة التكلفة لزيادة المبيعات والتواصل مع الفرق ودعم العملاء وتدريب الموظفين. أظهر العامان الماضيان مدى أهمية الفيديو بالنسبة للشركات الصغيرة. سرّع جائحة COVID من تبني الأعمال للفيديو ، سواء من أجل التعاون أو الاتصالات الخارجية. بالنسبة للعديد من الشركات ، يعد الفيديو أيضًا أداة للبحث عن العملاء المحتملين في جميع أنحاء العالم وتسويقهم وتقديمهم والالتقاء بهم. على نحو متزايد ، تقوم الشركات بتنفيذ الفيديو لدعم مبادرات العمل عن بعد. تقدر مؤسسة جارتنر أن 31٪ من جميع العاملين في جميع أنحاء العالم سيكونون عن بُعد هذا العام ، وهو رقم يشمل أولئك الذين يعملون بجدول زمني هجين أو بعيد تمامًا. سيكون لدى الولايات المتحدة أكبر نسبة من العمال عن بعد في عام 2022 ، حيث ستشكل 53٪ من القوة العاملة. القدرة على دعم الفيديو الفيديو عنصر حاسم في العمل عن بعد. هناك شيء مميز حول مشاركة الاتصال المرئي مع زملاء العمل ، وغالبًا ما يحفز الإبداع والتعاون. يمكنك رؤية تفاعل الأشخاص في الوقت الفعلي ، دون الحاجة إلى التردد أو محاولة قراءة "نغمة" البريد الإلكتروني. بالإضافة إلى ذلك ، يمكن مق

لا يزال هجوم برامج الفدية على FinalSite يعطل خدمات البريد الإلكتروني في آلاف المدارس

أوصت الشركة العملاء بالحد من استخدام البرامج لتحديثات المعلومات الهامة صباح يوم الجمعة حيث سعت المدارس إلى مراسلة أولياء الأمور حول COVID والإغلاق المرتبط بالثلوج. لا تزال شركة FinalSite لتكنولوجيا التعليم في طور التعافي من هجوم فدية مدمر أدى إلى شل العديد من الخدمات التي تقدمها لآلاف المدارس في جميع أنحاء العالم هذا الأسبوع. في تحديث صباح يوم الجمعة ، قالت الشركة إن "الغالبية العظمى" من مواقعها تعمل على الواجهة الأمامية ، لكن العديد من الأنظمة لا تزال تواجه مجموعة متنوعة من المشكلات. وحثوا عملاءهم - الذين يشملون آلاف المدارس في 115 دولة مختلفة - على تقييد "استخدام البرامج لتحديثات المعلومات الهامة للواجهة الأمامية" حتى يتأكدوا من أن جميع الوظائف تعمل بشكل كامل. وقالت الشركة: "تشمل أمثلة الاستخدام التي يجب تجنبها إرسال بريد إلكتروني / إشعارات ، ومهام سير العمل ، والاعتماد على التقويم والتنبيهات الرياضية ، وتحميل البيانات وما إلى ذلك". أثناء عودة بعض أنظمة الواجهة الأمامية ، قال موقع FinalSite إن بعض التصميم قد يكون مفقودًا ، وقد لا يتمكن المستخدمون من الو

Samsung Galaxy S22 مقابل iPhone 13: دعنا نقارن الأرقام

الرائد الجديد الأكثر ملاءمةً للميزانية من Samsung وعروضه متوسطة المدى تتماشى مع نظيرتها التي تعمل بنظام iOS لمعرفة ما إذا كانت Apple أو Samsung ستسودان الصدارة في أوائل عام 2022 في ذلك الوقت من السنة مرة أخرى. لقد انتهينا جميعًا من التعافي من العطلات ، والحب في الأجواء مع اقتراب عيد الحب ، وتطلق Samsung أحدث وأكبر الإدخالات في خط Galaxy S الرئيسي . هذه المرة ، تقدم الشركة بعضًا من أفضل كاميراتها على الإطلاق ، وتقليل مطبات الكاميرا ، وشحن أسرع ، من بين تحسينات أخرى. في حين أن المقارنة الأكثر منطقية بين هاتفي Galaxy S22 و Galaxy S22 + الجديدتين قد تكون عبارة عن تشكيلة تفاح إلى تفاح مقابل برامج Android الرئيسية الأخرى ، سنفعل شيئًا مختلفًا قليلاً هنا ونقارن بين هذه التفاحات ، حسناً ، Apple. على وجه التحديد ، iPhone 13. ستساعد هذه المقارنة جنبًا إلى جنب هؤلاء المتسوقين الذين ما زالوا على الحياد حول ما إذا كانوا يريدون الانضمام إلى فريق Blue Bubble أو فريق Green Bubble من خلال وضع مواصفات Samsung Galaxy S22 و Galaxy S22 + جنبًا إلى جنب مع أقرب نظيرتها التي تعمل بنظام iOS. بالطبع ، الاختلافا